Telegram Group & Telegram Channel
Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart



tg-me.com/opendatascience/2308
Create:
Last Update:

Visual-ARFT: открытый метод обучения AI-агентов обходит GPT-4o в мультимодальных задачах и снижает затраты на обучение на 88%

Исследователи обучали модель Qwen2.5-VL двум сценариям:
Агентный поиск: модель планирует, декомпозирует исходную задачу и извлекает информацию из внешних источников для ответа на сложные мультимодальные многошаговые VQA вопросы.
Агентное программирование: модель рассуждает о задаче, пишет и выполняет код для обработки изображений и решения сложных задач визуального анализа.

Visual-ARFT использует модульную систему верифицируемых вознаграждений:
Format Reward учит соблюдать четкий формат выходных данных, включая теги <think>, <search>, <code> и <answer>. Это стимулирует структурированное пошаговое рассуждение и корректное использование инструментов.
Accuracy Rewards оценивают качество ответов, используя F1-score, оценивая семантическое сходство поисковых запросов и выполнимость сгенерированного кода.

На MAT-Coding модель Qwen2.5-VL-7B с Visual-ARFT достигает улучшений +18.56% F1 и +13.00% EM по сравнению с базовой версией, превосходя GPT-4o.
На MAT-Search та же модель демонстрирует прирост +10.28% F1 и +8.66% EM.

Код доступен на Github.

#Stateoftheart

BY Data Science by ODS.ai 🦜






Share with your friend now:
tg-me.com/opendatascience/2308

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Data Science by ODS ai 🦜 from tw


Telegram Data Science by ODS.ai 🦜
FROM USA